
12 November 2008 SQL Server Magazine • www.sqlmag.com

SQL Server
SoLutionS
from the

FieLd

SQL Server
SoLutionS
from the

FieLd

COVER
STORY

SQL Server
SoLutionS
from the

FieLd

SQL Server
SoLutionS
from the

FieLd

Ola Hallengren
DBA at a Nordic investment bank,

Sweden, ola@hallengren.com,

ola.hallengren.com

At SQL Server
Magazine, we
believe in bring-
ing you field-tested, practical
solutions. Reader to Reader
content puts experts like
you directly in contact with
the solutions other reader-
experts have found. We’re
proud to feature four Reader
to Reader solutions this
month as November’s cover
story. We love receiving your
practical solutions from the
field, and I encourage all of
you to send us your favorite
solutions to the hard SQL
Server problems you’ve
encountered.

—Sheila Molnar,
executive editor,

SQL Server Magazine

M aintaining databases is an important but
time-consuming job. I wrote a script,
MaintenanceSolution.sql, that lets you

easily perform three common maintenance tasks:
backing up databases, checking the integrity of data-
bases, and optimizing indexes. The script is set up so
that you can call its three main stored procedures—
DatabaseBackup, IndexOptimize, and Database-
IntegrityCheck—separately. Thus, you can per-
form each task independently on the databases you
specify.
 MaintenanceSolution.sql is not only easy to use
but also offers features such as dynamic index optimi-
zation. Rebuilding and reorganizing indexes dynami-
cally has a number of advantages. It lets you rebuild
or reorganize only the indexes that need to be rebuilt
or reorganized, so locking and blocking are mini-
mized and fewer system resources are used. This, in
turn, can result in higher availability and reduce the
size of differential and transaction log backups.
 MaintenanceSolution.sql works on the Standard,
Enterprise, Workgroup, Express, and Developer
Editions of SQL Server 2008 and SQL Server 2005

SP2 running on X86, X64, or IA64 platforms. The
solution is supported on the same OSs that SQL
Server supports. You can download Maintenance-
Solution.sql by going to www.sqlmag.com, entering
100178 in the InstantDoc ID text box, and
clicking the 100178.zip hotlink. Aternatively, you can
download the script at http://blog.ola.hallengren
.com/blog/_archives/2008/1/1/3440068.html.

How to Back Up Databases
DatabaseBackup is the stored procedure in Mainte-
nanceSolution.sql that performs database backups.
When you call this stored procedure, it creates a back-
up directory, performs a database backup, verifies the
backup file, then deletes any old backup file for each
database you specify. You specify the database to
back up and other details using an EXECUTE state-
ment such as

EXECUTE dbo.DatabaseBackup

@Databases = 'USER_DATABASES',

@Directory = 'C:\Backup',

@BackupType = 'FULL',

THree-In-One Database
Maintenance SOlUTIOn
Back up databases, check their integrity,
and optimize indexes

SQL Server Magazine • www.sqlmag.com November 2008 13

COVER
STORY

@Verify = 'Y',

@CleanupTime = 24

This statement tells DatabaseBackup to perform a
full backup of all user databases, verify the backups,
then delete any backup files older than 24 hours.
 Let’s take a closer look at the EXECUTE state-
ment. You use the @Databases parameter to specify
the databases you want to back up. You can select all
user databases by specifying 'USER_DATABASES'
or select all system databases by specifying 'SYS-
TEM_DATABASES'. You can exclude databases
from the user databases using the syntax

@Databases =

 'USER_DATABASES, -Database1, -Database2'

where -Database1 and -Database2 are the names of
the databases you want to exclude. With this setup,
you can, for example, have a backup strategy for one
database and another backup strategy for all other
databases.
 Alternatively, you can back up an individual data-
base by specifying the database’s name, following the
syntax

@Databases = 'Database1'

To back up two or more individual databases, follow
the syntax

@Databases = 'Database1, Database2'

Besides the DatabaseBackup stored procedure, the
IndexOptimize and DatabaseIntegrityCheck stored
procedures use the @Databases parameter.
 The @BackupType parameter identifies the
backup type. The stored procedure can perform full
backups ('FULL'), differential backups ('DIFF'), or
transaction log backups ('LOG') on the databases you
specify.
 You use the @Directory parameter to specify the
backup root directory, under which DatabaseBackup
creates a directory structure consisting of the SQL
Server instance name, database name, and backup
type. So, for example, if your SQL Server instance is
Server1$Instance1 and you specify 'AdventureWorks'
for the @Databases parameter, 'C:\Backup' for the
@Directory parameter, and 'FULL' for the @Backup-
Type parameter, the stored procedure creates the direc-
tory structure C:\Backup\Server1$Instance1\Adven-
tureWorks\FULL. Each backup file’s name consists
of the SQL Server instance name, database name,
backup type, and date and time of the backup. In this
example, the filename would be Server1$Instance1_
AdventureWorks_FULL_20080904_000001.bak.
 The last two parameters are @Verify and
@CleanupTime. The @Verify parameter controls
whether the backup file should be verified ('Y') or not

('N'). The @CleanupTime parameter specifies when
to delete old backup files, assuming the backup and
the verification (if that was selected) was successful.

How to Optimize Indexes
Although there aren’t any set rules when it comes to
determining when and how to optimize indexes, there
are some basic concepts to guide you:
• Whether an index should be rebuilt, reorganized,

or left untouched depends on the index’s
fragmentation level. Highly fragmented
indexes (typically more than 30 percent
fragmented) should be rebuilt. Indexes
with little fragmentation (typically less
than 5 percent fragmented) should be left alone.
Moderately fragmented indexes (typically between
5 percent and 30 percent fragmented) should be
reorganized. (For more information about this con-
cept, see “Reorganizing and Rebuilding Indexes” in
SQL Server 2008 Books Online—BOL—at msdn
.microsoft.com/en-us/library/ms189858.aspx.)

• Index fragmentation in a very small table has no
impact on performance.

• When an index is rebuilt, the statistics are always
rebuilt and therefore updated. However, when an
index is reorganized, the statistics aren’t updated.
Therefore, you might want to update the statistics
after an index is reorganized.

• An index can be rebuilt online or offline. An offline
rebuild is faster than an online rebuild. (Note that
only the Enterprise and Developer Editions of
SQL Server 2008 and SQL Server 2005 support
online rebuilds.)

• When an index contains a large object (LOB)
column, an online rebuild can’t be done.

 The IndexOptimize stored procedure incorpo-
rates these concepts into its logic. This stored pro-
cedure categorizes indexes into six groups based on
their level of fragmentation (high, medium, or low)
and whether LOB columns are present (LOB) or
not (NonLOB). The parameters that represent these
groups are as follows:
• @FragmentationHigh_LOB represents indexes

with a high fragmentation level and LOB columns.
• @FragmentationHigh_NonLOB represents

indexes with a high fragmentation level and no
LOB columns.

• @FragmentationMedium_LOB represents indexes
with a medium fragmentation level and LOB
columns.

• @FragmentationMedium_NonLOB represents
indexes with a medium fragmentation level and no
LOB columns.

• @FragmentationLow_LOB represents indexes with
a low fragmentation level and LOB columns.

MORE on the WEB
Download the code at
InstantDoc IDs 100178,

100201, 100213, and 100217

Whether you
should rebuild
an index,
reorganize
it, or leave it
untouched
depends on
the index’s
fragmentation
level.

COVER
STORY

SQL SERVER SOLuTiOnS fROm ThE fiELd

14 November 2008 SQL Server Magazine • www.sqlmag.com

• @FragmentationLow_NonLOB represents indexes
with a low fragmentation level and no LOB
columns.

 IndexOptimize uses the avg_fragmentation_in_
percent column in the sys.dm_db_index_physical_
stats dynamic management view (DMV) to obtain
the percentage of fragmentation in each index. Using
the threshold limits you set in the @Fragmentation-
Level1 (lower threshold) and @FragmentationLevel2
(upper threshold) parameters, it places each index in
the appropriate group. Indexes with fragmentation
levels higher than the upper threshold go into one of
the high fragmentation groups. Indexes with fragmen-
tation levels at or between the two thresholds go into
one of the medium fragmentation groups. Indexes

with fragmentation levels under the lower threshold
go into one of the low fragmentation groups.
 IndexOptimize can also place indexes in one of
the low fragmentation groups based on their page
count. Indexes under the size specified in the @Page-
CountLevel parameter go into one of the low frag-
mentation groups.
 For each group, you can select one of the follow-
ing actions:
• 'INDEX_REBUILD_ONLINE'—Tells the stored

procedure to rebuild the indexes online. (You need
to be running the Enterprise or Developer Edition
of SQL Server 2008 or SQL Server 2005 to use this
option.)

• 'INDEX_REBUILD_OFFLINE'—Tells the stored
procedure to rebuild the indexes offline.

• 'INDEX_REORGANIZE'—Tells the stored proce-
dure to reorganize the indexes.

• 'INDEX_REORGANIZE_STATISTICS_
UPDATE'—Tells the stored procedure to reorga-

nize the indexes and update the statistics.
• 'STATISTICS_UPDATE'—Tells the stored proce-

dure to update the statistics.
• 'NOTHING'—Tells the stored procedure to do

nothing to the indexes.

 So, for example, the EXECUTE statement in List-
ing 1 tells IndexOptimize to rebuild indexes that are
more than 30 percent fragmented, online if possible
(no LOBs). If these highly fragmented indexes have
LOBs, an offline rebuild is to be done. Indexes with a
fragmentation level between 5 percent and 30 percent
are to be reorganized and have their statistics updat-
ed. Indexes that are less than 5 percent fragmented
or have fewer than 1,000 pages aren’t to be touched.
IndexOptimize uses T-SQL’s ALTER INDEX com-
mand to rebuild and reorganize indexes.

How to Check Databases’
Integrity
The DatabaseIntegrityCheck stored procedure uses
T-SQL’s DBCC CHECKDB command to perform
integrity checks. Using this stored procedure instead
of the Database Maintenance Plan Wizard’s Check
Database Integrity Task might mean that you don’t
have to install the hotfix for bug 50001012. (The
Check Database Integrity Task can lose database con-
text under certain circumstances in SQL Server 2005
builds 3042 through 3158—see support.microsoft
.com/kb/934458.)
 The EXECUTE statement you use to run
DatabaseIntegrityCheck is simple. You just need to
specify the databases you want to check. For example,
the statement

EXECUTE dbo.DatabaseIntegrityCheck

@Databases = 'USER_DATABASES'

checks the integrity of all user databases.

All Types of Information Are
readily Available
The DatabaseBackup, IndexOptimize, and Database-
IntegrityCheck stored procedures have thorough log-
ging and error handling. The start and end time, com-
mand text, and output are logged for each command
in the stored procedures. Additional information is
logged for the IndexOptimize’s ALTER INDEX com-
mand, as Figure 1 shows. All command information is
immediately written to a log file. You can find informa-
tion about how the stored procedures handle errors in
MaintenanceSolution.sql’s documentation at blog.ola
.hallengren.com/_attachments/3440068/Document
ation.html. The documentation also includes informa-
tion about how to use each stored procedure as well as
answers to frequently asked questions.

InstantDoc ID 100178

EXECUTE dbo.IndexOptimize
@Databases = 'USER_DATABASES',
@FragmentationHigh_LOB = 'INDEX_REBUILD_OFFLINE',
@FragmentationHigh_NonLOB = 'INDEX_REBUILD_ONLINE',
@FragmentationMedium_LOB = 'INDEX_REORGANIZE_STATISTICS_UPDATE',
@FragmentationMedium_NonLOB = 'INDEX_REORGANIZE_STATISTICS_UPDATE',
@FragmentationLow_LOB = 'NOTHING',
@FragmentationLow_NonLOB = 'NOTHING',
@FragmentationLevel1 = 5,
@FragmentationLevel2 = 30,
@PageCountLevel = 1000

LISTING 1: Sample Execute Statement for
the IndexOptimize Stored Procedure

Figure 1

Sample log entry for
the IndexOptimize
stored procedure’s

ALTER INDEX
command

